Plug & Play
ICMPv6 & Neighbor Discovery

Tomás P. de Miguel
Associate Professor
DIT Technical University Madrid
Plug & Play

- It is one major feature of IPv6
- It reduces IP support and maintenance costs for enterprises
- Essential for areas of IP growth:
 - mobile systems
 - home networks
- It is zero configuration networking and automatic device and service discovery
Autoconfiguration

- Neighbor Discovery
 - Obtain a new usable IP address
 - Find and use a new router
 - Switch automatically from one router to another
 - Addresses with lifetime
- Complete autoconfiguration
 - Announce its name: Dynamic DNS updates
 - Advertise its capabilities when requested
 - Learn about the presence and capabilities of other devices
 - Server / Service discovery
Neighbor discovery services

1. First time plugging
2. Address resolution
3. Advanced features
1. First time plugging

- New (or initial) Home Subnet
- Store new home address
- Finding neighboring routers
 - Keeping track of routers
- Get forward & reverse DNS entries installed
 - subsequent times on current home network, verify DNS entries
 - (note that “stateless autoconfig” is stateless for the network, not necessarily for the host)
- Determining whether a neighbor has become unreachable
Autoconfiguration

- **Stateless** autoconfiguration
 - Creation of global and site-local addresses
 - Based on ICMPv6
 - Creation of link-local addresses
 - Assumes that each interface can provide a unique identifier
 - With duplicate address detection
 - Security to disable hackers plug and play

- **Stateful** autoconfiguration
 - Obtain network information from a server
 - Use DHCPv6
 - Servers maintain a database with
 - Hosts addresses
 - Other configuration information
IPv6 nodes have multiple addresses

- Link-local addresses
 - Valid only on a specific link (LAN)
 - To communicate among nodes of the same link

- Site-local addresses
 - Valid only within a particular organization

- Global scope addresses
 - Globally unique
 - Can be used anywhere
Autoconfiguration process

a. Assign link-local address
 - Duplicate detection
b. IF fails THEN
 Autoconfiguration stops
c. Find routers
 - Wait periodic RA
 (from few seconds to 30 minutes)
 - Send RS
d. IF no receive any RA
 THEN Isolated network
e. Finish autoconfiguration
a. Obtain a Link Local Address

- Used only for communication among nodes attached to the same link.
- Definition using only information local to the node
 - Fixed 64-bit address prefix
 - 64-bit host address based on interface identifier
 - Use the MAC address
- The exact details of how an interface identifier are formed depend on the specific type of interface
IPv6 over Ethernet: EUI-64

MAC address

EUI-48 address

EUI-64 address

IPv6 host identifier: 36ED:84FF:FE32:5476
b. Duplicate detection

Device 64-bit interface identifier

Source:
FE80:0000:0000:0000:36ED:84FF:FE32:5476

Destination:
FF02:0000:0000:0000:0000:0000:0001:FF32:5476

Solicited-node link-local multicast prefix
FF02:0:0:0:0:1:FF00:0/104

24-bit interface identifier

Link-local prefix
FE80::/64

Device 64-bit interface identifier
34-ED-84-32-54-76

Target multicast address

Options

Reserved

Checksum

Type = 135
Code

© DIT-UPM, March, 2002

ICMPv6 & Neighbor Discovery
c. ICMP Router Advertisement

- Time (ms) that node assumes a neighbor is reachable
 - 0 = unspecified

- Time (ms) between neighbor solicitations

- Complete configuration with DHCP
 - M = obtain more addresses
 - O = Servers addresses

- Default router lifetime
 - 0 = no default router
 - few seconds
 - 18.2 hours

- Prefix Information options
 - Subnet number and mask
 - Node Subnets addresses

- Link MTU definition

Router Advertisement

Source
- Router address

Destination
- link-local multicast
- or
- node link-local

Options

Reachable Time

Retrans Timer
Neighbor discovery services

1. First time plugging
2. Address resolution
3. Advanced features
2. Address resolution

1) Source : 2001:0720:1500::2
 Destination : 2001:4200:3004::2

2) Routing
 It is not a local address
 Which router should be used? = 2001:0720:1500::1

3) Address resolution
 How to obtain the router MAC address?
The basic algorithm

Destination
2001:4200:3004::2

is local?

Prefixes list
2001:0720:1500::/64

has been recently used?

Prefixes list
2001:0720:1500::/64

where to send it?

Destinations cache
2001:4200:3004::7 -- 2001:0720:1500::1 - C
2001:8888:4444::3 -- 2001:0720:1500::1 - I

Neighbors cache
2001:0720:1500::1 - R
2001:0720:1500::3 - CC-49-23-50-A8-70- H

Routers list
2001:0720:1500::1

If unknown then
Address resolution

Neighbor Solicitation

Neighbor Advertisement

updates database
Redirects

- Sometimes hosts will pick the wrong next hop
 - there are several routers
 - Send to a router although destination is connected to the same link
- The router that receives the packet
 - will retransmit to the correct hop
 - send a Redirect Message
- Next message send to that destination travels only once to the correct router
Neighbor discovery services

1. First time plugging

2. Address resolution

3. Advanced features
Point to point connections

- Networks with no multicast communication
 - They will not able to send NS messages
 - Require some manual configuration
- Serial links have only two stations
 - Whenever they must contact a new destination consider the next hop is always the router
- NonBroadcast Multiple Access (NBMA) network
 - Send all messages to the router
 - If destination is directly connected
 - The router will send back a redirect message
Anycast servers

- An anycast address may be served by several stations connected to the same link

1. Send a NS to an Anycast Address
2. All stations served anycast reply a NA
 - use regular address not anycast address
3. The solicitor will receive several NA
 - The first will be used to complete the cache
 - The rest will be ignored

- In theory the first is the nearest and fastest
Multi-homed hosts

- Hosts connected to the network by several interfaces
 - Multi-homed hosts are not routers
 - Multiple connections are used for better performance
 - Host connected to several providers

- To transmit a message
 - Select an outgoing interface
 - It can use prefix information on various interfaces
 - The best matching prefix result the best performance
References