Security Architecture for the Internet Protocol: IPSEC

Víctor A. Villagrá
Associate Professor
Telematics Department (DIT)
Technical University of Madrid (UPM)

IPSEC

- □ Objective: to provide security mechanisms to IP (IPv4 or IPv6)
- Security Services
 - Integrity in a Connectionless Environment
 - Access Control
 - Authentication
 - Anti-replay Mechanisms
 - Data Confidentiality
 - Limited traffic flow confidentiality

IPSEC Scope

- □ I PSEC has three main functionalities:
 - Authentication Only
 - √Known as Authentication Header (AH)
 - Encryption + Authentication
 - √Known as Encapsulating Security Payload (ESP)
 - A key management functions
 - ✓IKE (ISAKMP / Oakley)
- □ I PSEC does not define the security algorithms to use:
 - Framework which allows the participating entities to choose among multiple algorithms.

IPSEC Scope

□¿How is IPSEC transmitted?

- A new header in the IP datagram between the original header and the payload
- In ESP, data are encrypted and a new datagram trailer is added

IP Datagram Original IP Header (IPv4 or IPv6)

Payload: TCP/UDP/ tunneled IP, etc.

IP Protocol: 17 (UDP), 6 (TCP), 47 (GRE), etc,

IPSEC Datagram

Original IP Header (IPv4 or IPv6)

IPSEC Header

IPSEC

Data (maybe encrypted): TCP/UDP/Tunneled IP, etc.

I PSEC Trailer

IP Protocol: IPSEC (50-ESP, 51-AH)

Next Header: 17 (UDP), 6 (TCP), 47 (GRE), etc

dit UPM

IPSEC Security Association (SA)

- □ Interoperability environment used in AH and ESP
- One-to-one relationship between sender and receiver which define the set of security parameters used
- A SA establishment is needed before any communication: I KE
- ■SA contents:
 - Security Parameter Index (SPI)
 - IP Destination Address
 - Security Protocol I dentifier

Security Association (SA)

- ■Security Parameter Index (SPI)
 - Bitstring assigned to the SA with local meaning.
 - ✓ Pointer to a SA data base (SPD: Security Policy Database).
 - It is transmitted in the AH and ESP headers for selecting the SA which will process the message
- □ IP Destination Address
 - Only unicast addresses allowed.
- Security Protocol I dentifier (SPI):
 - AH (authentication only)
 - ESP (encryption and optionally authentication)

dit UPM

¿ What is defined by a SA?

- Sequence Number Information:
 - A sequence number, overflow action and anti-replay window for assuring integrity of datagrams.
 - 32 bits value used to generate the sequence number transmitted in the AH and ESP headers
- Security Information:
 - Authentication algorithms, keys, lifetimes, etc. used in AH or ESP
- □ *I PSEC Protocol Mode:* Transport, tunnel or wildcard
- □ SA Lifetime: Time or bytes interval of a SA.
- □ Path MTU: Maximum packet size transmitted without fragmenting them

Authentication Mode: AH

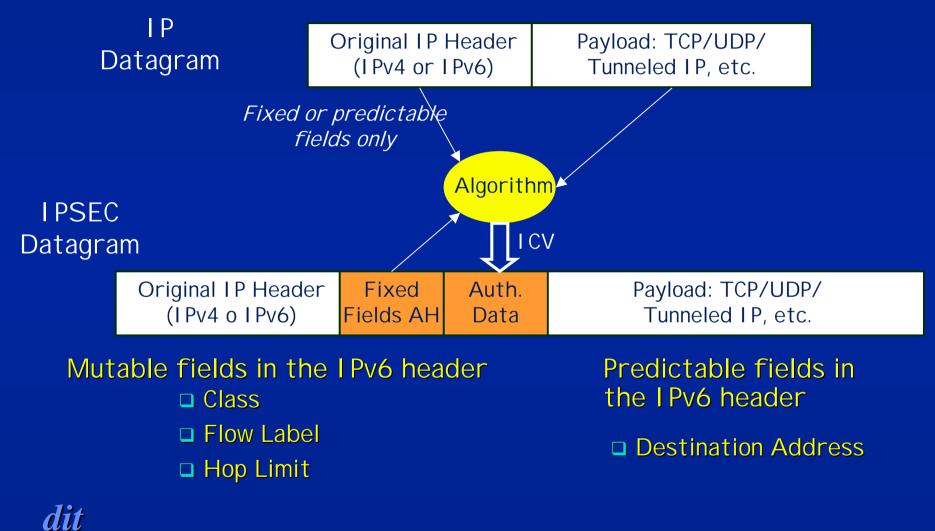
- □AH: Authentication Header
- □ It provides support for the authentication and integrity of the IP datagrams.
 - Changes in the content are detected
 - Receivers can authenticate the sender
 - It avoids the IP-Spoofing attack
 - It provides protection against the replay attack.

dit UPM

IPSEC Authentication Header (AH)

Bit: 0 8 16 32 Next Header Payload Length RESERVED Security Parameter Index (SPI) Sequence Number Authentication Data (variable)

- Next Header: data protocol transmitted inside IP
- □ Payload Length: Length of the AH header
- Security Parameter Index (SPI): identification of the SA of this datagram
- □ Sequence Number: counter incremented with each packer
- Authentication Data: Integrity Check Value (ICV)

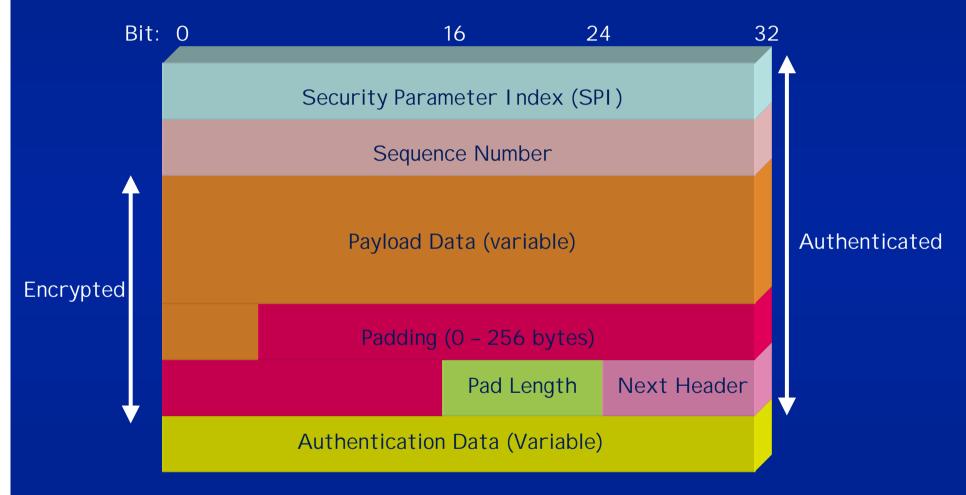

dit UPM

Authentication Header (AH)

- □ Authentication is based on the use of the *Integrity Check Value*, with an algorithm specified in the SA.
- □ I nput: message digest and secret key
- □ Output: I CV transmitted in the Authentication Data field of the AH
- □ The algorithm is applied to:
 - The whole datagram payload
 - Fields of the IP header which do not change in transit or are predictable.
 - The AH header, except the Authentication Data field
- □ Algorithms: at least MD5 and SHA-1 for interoperability

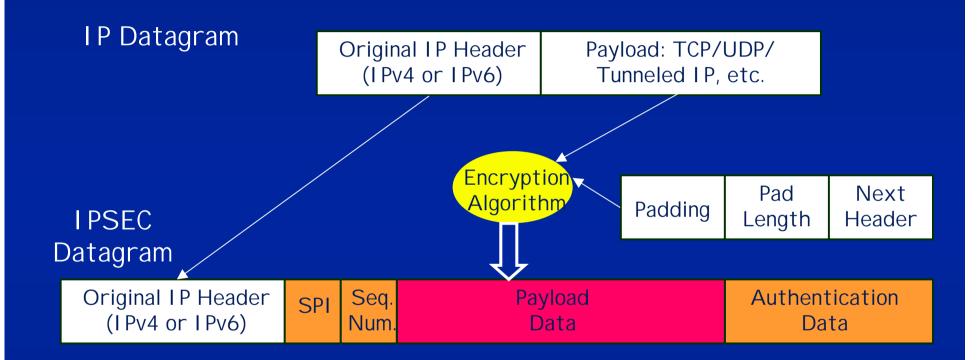
dit UPM

Authentication Data


UPM

Encryption Mode: ESP

- ESP: Encapsulating Security Payload
- It provides:
 - Content confidentiality
 - Limited traffic flow confidentiality
 - Optionally, authentication services like AH
- Contents of the ESP datagram:
 - Security Parameter Index (SPI): SA of this datagram.
 - Sequence Number: counter incremented with each packet
 - Payload Data: Encrypted data of the IP Protocol
 - Padding: when needed by the encryption algorithm
 - Pad Length: Number of padding bytes
 - Authentication Data: I CV computed over all the datagram
 - Next Header: Data protocol in the payload data


dit UPM

Format of the ESP Datagram

dit UPM

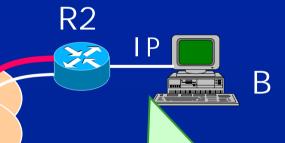
ESP computation

Cryptographic Algorithms

- Specified in the SA
- □ For encryption, it is used symmetric algorithms
- For interoperability, the following ones should be supported
 - DES with CBC mode for encryption
 - MD5 and SHA-1 for authentication
- There are many others that may be used (with an id):
 - Triple DES, RC5, I DEA, CAST, Blowfish, etc.

dit

Transport and Tunnel Mode


Internet *IPSEC*

Tunnel Mode (VPN):

Internet **IPSEC**

Source IP: A Destination IP: B

Source IP: R1

Destination IP: R2

Source IP: A Destination IP: B

IPSEC

Transport and Tunnel Mode

IP Datagram

Original IP Header (IPv4 or IPv6)

Payload: TCP/UDP

IPSEC Datagram (transport mode)

Original IP Header (IPv4 or IPv6)

ESP Header Encrypted Payload (TCP/UDP)

ESP Trailer Authentication Data

I PSEC Datagram (tunnel mode)

New IP Header (IPv4 or IPv6)

ESP Header Original IP Head.

Encrypted Payload (TCP/UDP)

ESP Trailer Authentication Data

dit UPM

IPSEC 17

Key Management

- Default Protocol for Key Management in IPSEC: IKE (Internet Key Exchange)
- ■Standard Method for:
 - Dynamically authenticate IPSEC peers
 - Negotiate security services
 - Generate shared keys
- Two components:
 - I SAKMP: procedures and packet formats for the establishment, negotiation, modification and deletion of a SA.
 - OAKLEY: Key exchange protocol.

OAKLEY

- Key Determination Protocol
- Main objective: generation of a session key shared by both peers.
- Method: : Diffie-Hellman algorithm (modified)
 - Previous agreement on:
 - ✓A large primus number: q
 - ✓A primitive root of q: a (a mod q, a² mod q, .. aq-1 mod q are different)
 - A selects X_A (secret) and transmits to B: Y_A=a X_A
 - B selects X_B (secret) and transmits to A: Y_B=a X_B
 - Both compute $K=(Y_B)^{X_A}$ mod $q=(Y_A)^{X_B}$ mod q
 - It is modified for authenticating the peers and avoiding the "man-in-the-middle" attack.

dit UPM

OAKLEY

- ☐ Goal: having a shared key between two authenticated identities
- Basic protocol components:
 - Cookies exchange
 - Diffie-Hellman half-keys exchange
 - Authentication.
- □ It is possible to make it with a different number of transaction (I SAKMP modes)
- Authentication:
 - Pre-shared key
 - DNS public keys (DNSSEC)
 - RSA public keys without certificates (PGP)
 - RSA public keys with certificates
 - DSS public keys with certificates

I SAKMP

- □ Procedures and formats for the establishment, negotiation, modification and deletion of a SA.
- Exchanges in I SAKMP:
 - Base: key exchange and authentication together
 - Identity Protection: first key exchange and then authentication
 - Authentication Only: without key exchange
 - Aggressive: key exchange and authentication minimizing the number of transactions
 - Informational: one-way for SA management.

