Plug and Play Using Prefix Delegation Mechanism

SUZUKI, Shinsuke
Hitachi, Ltd. / KAME Project
<suz@crl.hitachi.co.jp>

Abstract

- * Issues to be Solved
- Prefix Delegation Using IPv6 DHCP
- Enhancement Issues in Prefix Delegation
 - Server Discovery
 - Multiple Prefix Delegation

IPv6 Plug and Play

* PC can get an IP address automatically via Router Advertisement (RA)

→IPv6 Plug and Play

PC Router Internet

IPv6 Plug and Play

* PC can get an IP address automatically via Router Advertisement (RA)

→IPv6 Plug and Play

IPv6 Plug and Play

 PC can get an IP address automatically via Router Advertisement (RA)

→IPv6 Plug and Play

Issues in Current IPv6 Plug and Play (1)

- * Routers have to be configured manually
 - otherwise, packet from PC cannot be routed properly
 - normal SOHO users cannot configure routers

Quite difficult to deploy IPv6 for ordinary Internet users!

c.f.) IPv4 Plug and Play for CPE Routers

* CPE Routers can be configured automatically, but there is a NAT!

Plug & Play by IPv4 DHCP Plug & Play by IPv4 DHCP (private IPv4 address) (global IPv4 address)

Internet

Issues in Current IPv6 Plug and Play (2)

* IP address is automatically configured, but other information still has to be configured manually:

- DNS server
- NTP server
- Packet filter

Prefix Delegation (PD)

- * PE router delegates IPv6 prefix(es) to **CPE** routers
 - then CPE routers are automatically configured to generate RA toward PC
 - →Plug and Play for CPE Router!

Choose a prefix (/64) for PC segment

* Use IPv6 DHCP framework to distribute IPv6 prefix

* Use IPv6 DHCP framework to distribute IPv6 prefix

* Use IPv6 DHCP framework to distribute IPv6 prefix

Advertise candidate prefix (2001:db8:a::/48)

PE Router IPv6 DHCP server

PE Router IPv6 DHCP server

* Use IPv6 DHCP framework to distribute IPv6 prefix

Reply with the prefix (2001:db8:a::/48)

PE Router IPv6 DHCP server

* Use IPv6 DHCP framework to distribute IPv6 prefix

PC CPE Router
IPv6
DHCP
client

Reply with the prefix (2001:db8:a::/48)

PE Router

IPv6 DHCP server

Choose 2001:db8:a:1::/64

for PC segment

* Use IPv6 DHCP framework to distribute IPv6 prefix

Plug and Play by RA (2001:db8:a:1::/64)

Reply with the prefix (2001:db8:a::/48)

PE Router

IPv6
DHCP

server

Choose 2001:db8:a:1::/64

for PC segment

 Other DHCP options can be negotiated simultaneously

→Server addresses (e.g. DNS, NTP) can be specified to CPE router

PD Status

- IETF Standardization
 - almost finished
 - waiting for RFC-editor's review...
- * Implementations
 - PE Router
 - * Cisco, Hitachi, KAME, NEC, USAGI
 - CPE Router
 - * 6WIND, Allied-Telesyn, Cisco, IIJ, KAME, NEC, USAGI, Yamaha
 - interop'ed in lots of test events
 - * IPv6 Showcase (Jul 2002), TAHI (Jan 2003)
 - Two Japanese ISPs have started PD service

PD Implementation Example

- * PE (e.g. Hitachi)
 - can distribute these information:
 - * DNS Server Address
 - DNS Domain Search List
 - * NTP Server Address
 - * IPv6 Prefix
- * C P E (e.g. KAME)
 - can reflect these information to its configuration:
 - * DNS Server Address
 - * IPv6 Prefix

Enhancement Issues in PD

- * Server Discovery on PC
 - Necessary for complete Plug and Play
- * Multiple Prefix Delegation
 - A new service making use of the vast IPv6 address space

IPv6-specific!

Server Discovery on PC(1)

- * PC has to know the DNS/NTP server, but how? (only SOHO router knows...)
 - Inform the actual DNS/NTP server.
 - SOHO router behaves as a DNS/NTP relay

Server Discovery on PC(2)

- * Inform the actual DNS/NTP Server
 - another IPv6 (stateless) DHCP on PC segment
 - CPE Router has to inherit DNS/NTP server information from PE Router to its internal DHCP server
- CPE Router behaves as a DNS/NTP relay
 - Well-known site-local addresses (fec0:0:0:ffff::1~3)
 - * but site-local has been deprecated...
 - IPv4 DHCP (private-address) on PC segment
 - * have to manage IPv4 :-(
 - IPv6 (stateless) DHCP on PC segment

Server Discovery on PC(2)

- * Inform the actual DNS/NTP Server
 - another IPv6 (stateless) DHCP on PC segment
 - CPE Router has to inherit DNS/NTP server information from PE Router to its internal DHCP server
- CPE Router behaves as a DNS/NTP relay
 - Well-known site-local addresses (fec0:0:0:ffff::1~3)
 - * but site-local has been deprecated...
 - IPv4 DHCP (private-address) on PC segment
 - * have to manage IPv4 :-(
 - IPv6 (stateless) DHCP on PC segment

PC | IPv6 DHCP Client | IPv6 DHCP Server | PE | Router | Router | Router | PE | Router

IPv6 DHCP Client IPv6 DHCP Server DNS/NTP Server info

Server Discovery on PC(2)

- * Inform the actual DNS/NTP Server
 - another IPv6 (stateless) DHCP on PC segment
 - CPE Router has to inherit DNS/NTP server information from PE Router to its internal DHCP server
- CPE Router behaves as a DNS/NTP relay
 - Well-known site-local addresses (fec0:0:0:ffff::1~3)
 - * but site-local has been deprecated...
 - IPv4 DHCP (private-address) on PC segment
 - * have to manage IPv4 :-(
 - IPv6 (stateless) DHCP on PC segment

IPv4/v6 DHCP Client

IPv4/v6 DHCP Server

Multiple Prefix Delegation (1

* If multiple prefixes can be delegated properly; there are some benefits:

- Redundancy
 - * multi-home
- Seamlessly multiplexed services
 - * by assigning prefix per each service (e.g. VPN and Internet)
 - * Since each service is mapped to the corresponding prefix, administrator can easily control network by service (e.g. QoS policy, packet filter)

Multiple Prefix Delegation (2)

- * Example: VPN and Internet for Home
 - PC must use a proper source address for each service to pass through ingress filtering:
 - * e.g. use VPN's prefix to connect to VPN
 - In case of IPv4, you have to press "VPN-on" button on PC when you use VPN.
 - If multiple IPv6 prefix are delegated from each services, PC can automatically select source address
 - * longest-match to the destination address (RFC3484)

Summary

- * PD is a concept to configure CPE routers
- * IPv6 DHCP framework is used in its implementation
- * Proposed an enhancement guideline for better services:
 - Server Discovery on PC
 - Multiple Prefix Delegation
- * Hitachi is now investigating these features to provide good services in IPv6!

Thanks for your attention!

Feel free to contact me, if you are interested in multiple-prefix-delegation!